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Abstract— Robots with a parallel-jaw gripper and suction
cup is an adaptive and efficient robotic picking system. This
paper proposed Policy-Oriented Instance Segmentation (POIS)
for ambidextrous robots. POIS can generate a pair of target
masks that allows ambidextrous robots to pick in parallel. It
takes a depth image and predicts initial mask, center offset,
and policy confidence map through three paralleled branches.
We incorporate the initial mask with center offset to obtain
candidate instances, from which we select masks of target
objects for policy execution (decided with policy confidence
map). We also provide a dataset that contains 6k synthetic
scenes and 100 real scenes for ambidextrous picking. Trained
on synthetic scenes, POIS generalizes well in real scene and
is capable of handling novel objects in cluttered scenes. Our
dataset and video are available at https://bit.ly/3oJj8Tu.

I. INTRODUCTION

Universal picking has a huge potential in e-commerce
logistic management [1], [2], manufacturing [3] and service
robots [4]–[6], and its application requires an adaptative and
efficient robotic picking system. Using multiple grippers is
an effective way to improve adaptability [7]–[9]. Parallel-jaw
gripper and suction cup complement each other: Vacuum-
based suction-cup grippers can quickly pick larger objects
with planar surfaces such as boxes, and the parallel-jaw
grippers can easily pick small objects, such as paper clips,
or irregular-shaped objects, such as cup [10]–[13]. There-
fore, combining them increases robots’ adaptability to object
with various geometries and materials. In Amazon Picking
Challenge [14], many teams have used the gripper with a
retractable mechanism that enables quick switching between
suction and grasping [14]–[16].

Pick-policy-making is a critical part of a multi-gripper
robot. Andy Zeng et al [15] used Suction Affordance Con-
vNet and Horizontal Grasp Affordance ConvNet to generate
pixel-wise confidence maps for grasping and suction from
a multi-viewed image and choose the picking pose with
the highest confidence score. However, the training takes a
massive hand-labelled pick proposal dataset, which is too
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Fig. 1: The method takes a depth image and outputs a pair of
masks, one object for suction(blue mask in (b)) and the other for
grasping(orange mask in (b)), for ambidextrous picking (a).

expensive for industrial applications. Moreover, the multi-
functional gripper designed for the competition has a delicate
mechanical structure, and frequent switch can cause damage.
Dex-Net 4.0 [17] enables ambidextrous robots to switch
between two arms and successfully pick a wide range of
objects with various materials and geometries. However, only
one arm operating at a time is undesired in efficiency.

Therefore, we propose Policy-Oriented Instance Segmen-
tation (POIS) that outputs a pair of masks that allows
ambidextrous robots to pick in parallel (as shown in Fig. 1).
The selection of the best target pair depends on the position,
pose, and geometry, and we use a neural network to deal
with complicated factors. Trained on 5k synthetic scenes,
POIS generalize well in real space and is capable of handling
novel objects in cluttered scenes. Besides, we propose Mask-
based Grasp Pose Detection (Mask-GPD) and Mask-based
Suction Pose Detection (Mask-SPD) to generate picking
pose as ground truth label for training POIS and evaluating
segmentation result. It is noteworthy that we estimate the
centroid of the target object in the analysis. With the contact
close to the centroid, the gripper holds the object more stably.

The contributions are as follows:
1) A policy-oriented instance segmentation (POIS)

method which can generate a pair of masks that enables
ambidextrous robots to pick in parallel.

2) A dataset that contains synthetic and real data for
policy-oriented instance segmentation.

3) A set of metrics that assess instance segmentation
based on ambidextrous picking performance.

II. RELATED WORK

A. Multi-Gripper Picking

Many multi-gripper picking solutions show that combining
parallel-jaw gripper and suction cup is an effective way to
increase picking adaptability [14]–[17]. In 2017 Amazon
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Picking Challenge, Andy Zeng et al. [15] innovated a multi-
functional gripper with a retractable mechanism that enables
switching between suction and grasping. By comparing the
confidence maps of grasp and suction, the robot switches
between the two grippers to take action for good performance
in cluttered scenes. However, the training procedure needs a
massive hand-labelled picking proposals dataset, which is too
expensive for industrial applications. Multi-functional grip-
per designed for the competition has a delicate mechanical
structure, and frequent switch can cause damage.

To solve the above problems, Dex-Net 4.0 [17] utilized
ambidextrous robots and can be trained on synthetic data.
Dex-Net 4.0 uses Grasp Quality Convolutional Neural Net-
work (GQ-CNN) to predict the grasp qualities of parallel-
jaws and suction cups, and select a gripper by maximizing
grasp quality. The robot switches between two arms and suc-
cessfully pick a wide range of objects with various materials
and geometries. However, with only one arm moving at a
time, it does not take full advantage of ambidextrousness.

B. Segmentation of Unseen Objects

The problem of unseen object instance segmentation
(UOIS) [18] is a significant problem in universal picking
[19]–[21]. SD Mask R-CNN [22] uses a large amount
of synthetic data to train instance segmentation network
Mask R-CNN [23] category-agnostically. Through massive
randomization over a diverse set of 3D objects, camera poses,
and camera intrinsic parameters, SD Mask R-CNN does not
need extra techniques to tackle the Sim-to-Real problem.

UOIS-Net [18] is a more sophisticated network that can
generate sharper masks by taking advantage of depth images
and RGB images separately. It uses the two-stage method:
Depth Seeding Network (DSN) uses depth image to generate
initial mask; Region Refinement Network (RRN) uses RGB
image and initial mask to produce refined mask. Trained on
synthetic data, it shows great efficacy on multiple datasets
for UOIS in tabletop environments. Inspired by its architec-
ture, we developed a policy-oriented instance segmentation
network for ambidextrous picking.

III. PROBLEM STATEMENT

With a depth image as input, our goal is to find a pair of
masks, with one object for suction and the other for grasping,
that allows parallel picking from the cluttered scene.

A. Definition

We use the following definition in this paper:
• Pick: The overall name of grasp and suction.
• Suction reference point Ps: The farthest point to the

initial position of suction gripper.
• Grasp reference point Pg: The farthest point to the initial

position of parallel-jaw gripper.
• Null policy: A null policy is a policy that does nothing.
• Target mask: Mask of a selected object (either through

grasp or suction).
• Interference-free: Two arms’ paralleled motions do not

interfere (such as colliding or blocking) with each other.

B. Assumptions

• The moving distance of gripper is inversely proportional
to the distance between target ran reference point.

• According [24] [25] [26], the difficulty of path planning
is inversely proportional to the distance between the two
targets where they locate in their workspace.

• A single overhead depth sensor with known intrinsic,
position, and orientation relative to the robot.

IV. METHOD

We consider the problem of generating a pair of masks
for paralleled picking in clutter. The architecture of POIS is
shown in Fig. 2. We also provide Mask-GPD and Mask-SPD
to generate picking poses to verify the segmentation result.

A. POIS Network

1) Network Architecture: We consider the problem of
generating a pair of interference-free picking poses for
unseen objects in clutter.

The network takes as input a 3-channel (XYZ coordinate)
organized point cloud, D ∈H×W×3 (H,W denote height and
width), and outputs n masks of targets (n ∈ {0, 1, 2}). Point
clouds D are converted from depth images.

In order to obtain a higher receptive field, we use a
modified U-Net [27] used in UOIS [18] as backbone. It
takes point cloud D and outputs a feature map with 64
channels. Sitting on top of this are three parallel branches of
convolutional layers that produce three outputs: initial mask
F ∈H×W×C , where C is the number of semantic classes
(target objects, other objects and background), policy con-
fidence P ∈H×W×G, includes confidence of grasp, suction
and null, and center offsets to object centers V ∈H×W×3.
Each pixel of V encodes a 3-dimensional offset vector
pointing to the object’s 3D center, so the predicted object
centers for each pixel is Objco = D + V . While we use
U-Net for the segmentation architecture, our framework can
replace it with other suitable network architectures.

Instance Segmentation: we compute target masks from
F ,V and P . Firstly, we perform mean shift clustering [28] in
3D space over the center votes Objco. After clustering, each
pixel is assigned to the center vote’s cluster ID to generate
the instance masks. The clustering is only applied to the
target objects pixels for computational efficiency.

Policy decision: we use confidence map P to get Ck
g , Ck

s ,
the parallel-jaw grasping and suction confidence:

Ck
{g,s} =

1

Nk

Nk∑
i=1

P i
{g,s}, (1)

where Nk is the number of pixels in the k-th mask, P i
g , P i

s is
grasping confidence and suction confidence of the ith pixel.

We choose the mask with the largest P i
g as the grasping

target and the mask with the largest P i
s as the suction target.
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Fig. 2: POIS first converts a depth image to an organized point cloud and uses CNN to extract features. It produces three outputs: initial
mask F , center offset V , and policy confidence P with three paralleled convolutional networks. We incooperate the initial mask with V
to get instance masks, from which we select target masks (decided with policy confidence).

2) Loss Functions: target segmentation F , center offsets
V and grasp confidences P each has its loss function.
Consider the case of imbalanced image, we use a weighted
cross entropy loss function for target segmentation F :

`ts =
∑
i∈Ω

wts
i `CE

(
F̂i, Fi

)
, (2)

where Ω is the set of all pixels, F̂i and Fi are the predicted
and ground truth probabilities of pixel i, and `CE is the
cross-entropy loss. The weight wts

i is inversely proportional
to the number of pixels with labels equal to Fi, normalized
to [0, 1].

We apply a weighted Smooth L1 loss `SL1 to the center
offsets V to minimize the distance of the center votes to their
corresponding ground truth object centers:

`co =
∑
i∈Ω

wco
i `SL1

(
Ôbjcoi −Obj

co
i

)
, (3)

where Objecti is the 3D coordinate of the ground truth grasp
target object center for pixel i. The weight wco

i is inversely
proportional to the number of pixels with the same grasp
target object label ti.

For grasp confidence P , we also use a weighted cross
entropy:

`gc =
∑
i∈Ω

wgc
i `CE

(
P̂i, Pi

)
, (4)

where P̂i, P are the predicted and ground truth grasp con-
fidence of pixel i, respectively. The weight wgc

i is inversely
proportional to the number of pixels with labels equal to Pi,
normalized to [0, 1].

In summary, the total loss is given by:

L = λts`ts + λco`co + λgc`gc (5)

Where λts, λco, and λgc represent the balance weights for
the different losses.

B. Mask-Based Grasp Pose Detection (Mask-GPD)

Mask-GPD is based on GPD [29], and the major changes
are as follow:

1) Instead of sampling picking candidates globally, we
constrain the sampled area by the mask of targets.

2) In the evaluation of grasp pose, we use the following
formula Sg:

Sg = 1−
(
dg
dm

+
θg
θm

)
, (6)

where dg is the distance between the center of target
and picking approaching line. dm is the maximum
distance between the center of target and its surface. θg
is the angle between the approaching line and gravity,
θm is the maximum of θg .

3) We choose the pose with the highest Sg as the best
grasp pose.

C. Mask-Based Suction Pose Detection (Mask-SPD)

The key of a successful suction is whether a seal can be
formed between a suction cup and a target object surface,
and Mask-based suction pose detection is based on that. We
exclude the points on the uneven area by calculating the
angle between norms of point Pi and its neighborhood:{

pi ∈ C if α > αm,
pi ∈ Z otherwise, (7)
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where C, Z is the sets of suction candidates and excluded
points, αm is the maximum of α. Then, we evaluate each
point in Z as follows:

Ss = 1−
(
ds
dsm

+
db
dbm

+
θs
θsm

)
, (8)

where ds is the distance between center of target and suction
pose. dsm is the maximum distance between center for the
object and its surface. db and dbm are the distances between
suction candidates to the closest and furthest excluded points.
θs is the angle between suction approaching line and gravity,
θsm is the maximum of θs. Finally, we choose the pose with
the highest Ss as the best suction pose.

V. DATASET

To train and test POIS, we build a dataset called POIS
Dataset. The training set comprises only synthetic data, and
the testing set comprises both synthetic data and real data.
Fig. 3 contains some examples in POIS Dataset. Notice that
the synthetic data includes RGB, depths, instance segmen-
tation masks, and ground truth picking policy, and the real
data only contains depths because our real evaluation does
not rely on annotative information.

A. Synthetic Dataset Generation

Based on our task, we generate a synthetic dataset of 6000
scenes that features the following:

1) A variety of clutteredness across scenes
2) An extensive coverage of 289 daily objects
3) A relatively even division between the numbers of

graspable and suckable objects in each scene
4) A test set that consists completely of unseen objects
The dataset is prepared in the BOP format [30]: a scene

with N objects produces a RGB image Yc, a depth image
Yd and a set of pairs of visibility mask and non-occlusion
mask SM = {(Mk

v ,M
k
no)}Nk=1. Each pair of visibility mask

and non-occlusion mask corresponds to an object.
Our dataset generation follows a three-step procedure: ob-

ject loading, scene rendering, and mask computation. As an
overview of the tools used in the process, the first two steps
utilize BlenderProc [31], which can generate photorealistic
training image. Comparing to similar solutions [32], [33],
BlenderProc provides an outstanding RGB rendering quality
and sufficient customizability for the task. We conduct the
third step using BOP Toolkit.

To configure a single scene, we first load our environ-
ment (workstation) model and select xk objects ( xk ∼
U(1, 15) ) from our dataset of 3D PLY models, where
xk = Ngraspable = Nsuckable. Each object ends up with a 3D
poses after dynamic simulation. The next step of rendering an
RGB image and a depth image applies domain randomization
[34] over lighting colour, light source position, object mate-
rial, and camera pose for robust transfer from simulation to
reality. Lastly, we use the object poses and the camera pose
configured in the previous steps to calculate the visibility
masks and non-occlusion masks for each object in the scene.

B. Training & Test Set Division

The 6000 scenes consist of 5000 training scenes and 1000
test scenes. It is important to note that we adopt different
3D models for the training and test to evaluate the POIS’s
performance on novel objects. Specifically, 244 out of the
289 objects are only used in the training set generation. And
the rest 45 objects are only used in the test set generation.

C. Ground Truth

The masks and poses of the objects generated by Blender-
Proc is not directly usable for POIS training. The training re-
quires a pair of masks as ground truth labels with a suckable
object and a graspable object for this task. Moreover, in order
to minimize difficulty of path planning and the displacement
of arms, the relative location of targets is critical.

To find the target pair, we use Mask-GPD and Mask-SPD
proposed in Sec.IV-B and Sec.IV-C. We first evaluate the
scores of grasping Smg and scores of suction Sms for each
object as follows:

Smg = dl + rv (9)

Sms = dr + am, (10)

where dl is the distance between the center of mask and the
left reference point, dr is the distance between the center of
mask and the right reference point, am is the visible area
of mask, and rv is the visibility of mask (visible area / top
view surface area). dl, dr, am, rv are normalized to [0, 1].

We rank Smg and Sms ascendingly to get list Ls and list
Lg . Then, we take the pair of the best suction mask and the
best grasping target as ground truth for the training process.

D. Real Data

To evaluate POIS’s real-world performance and its ability
to work on novel objects, we collect 100 real scenes. We use
a high-resolution Photoneo PhoXi industrial sensor (1032 ×
772 with 0.05 mm depth precision) to obtain depths in real
space and crop them (to 640 × 480). With the calculated
camera configuration, we can rebuild the 3D structure from
the cropped depth image.

The objects in these bins were sampled from a set of 50
novel objects with highly-varied geometries, including fruits,
vegetables, toys, and daily necessities. The number of objects
is a random integer in [1, 50].

VI. EXPERIMENT

POIS is trained for 30K iterations with Adam [35], with
an initial learning rate of 1e-4. In this section, we use a batch
size of 8, with λts = 3, λco = 5, λgc = 1. All images have
a resolution of H = 480, W = 640.

A. Metrics

Instance segmentation is partitioning each object from
each other, and its performance is conventionally largely
evaluated by accuracy and sharpness. However, a sharp
segmentation does not necessarily lead to a successful pick
in our task. The goal of POIS is to find the most appropriate
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RGB Depth Segmentation Masks Ground Truth Labels

Train

Synthetic Training Set & Test Set

Test

Real Data

Fig. 3: Some examples in POIS dataset. Training set and testing set contain different set of objects in order to test the segmentation of
unknown object. Real data is used only for testing the performance.

targets and the corresponding picking policy. Therefore, we
propose metrics that evaluate ambidextrous performance on
grasping with either synthetic or real depth input.

1) Omission rate P0: When the predicted number of
objects is less than 2, we believe there is an omission.
The omission rate is:

Po =
1

Nt

Nt∑
i=1

(
2− np

2

)
, (11)

where np is the estimated number of objects, Nt is the
number of images in testing set.

2) Incorrect detection rate: The rate of recognizing non-
graspable to graspable object. After obtaining grasp-
ing object masks, we use Mask-GPD to generate the
grasping pose and its confidence S′g . If S′g < Sgm

(Sgm is the minimum of confidence, Sgm = 0.4 in our
experiment), we believe the object is non-graspable.
Similarly, S′s, Ssm are the confidence of suction pose
(calculated with Mask-SPD) and the corresponding
minimum (Ssm = 0.6 in our experiment). Mathemati-
cally, the incorrect detection rate is:

Pe =
1

2Nt

Nt∑
i=1

(
I(i)
g + I(i)

s

)
, (12)

I
(i)
{g,s} =

{
1 if S′(i){g,s} < S{g,s}m,

0 otherwise .
(13)

3) Successful paralleled picking rate Pd: A successful
paralleled picking requires: a) np = 2, b) S′g > Sgm, c)
dgs > dm. Where dgs is the distance between grasping
target and suction target, and dm is the minimum of
dgs. The successful paralleled picking rate is defined
as:

Pd =
Ns

Nt
, (14)

where Ns is the count of successful paralleled picking.

(a) (b)

(c) (d)

Fig. 4: Four representative segmentation result (a) accurate seg-
mentation of target objects (b) over segmentation of target objects
(orange) and under segmentation of target objects (blue) (c) seg-
mentation of suction target when grasp target is not available (d)
segmentation of grasp target when suction target is not available.

4) Average Score of paralleled picking Pa:

Pa =
1

Nt

Nt∑
i=1

(αsS
′
s + αgS

′
g + αsαgαgsd

′
gs) (15)

αs, αg, αgs =

{
1 if S′s > Ssm, S

′
g > Sgm, d

′
gs > dm,

0 otherwise,
(16)

where d′gs is the normalized dgs.

B. Performance on synthetic and real images

To prove POIS’s performance, we evaluate it quantitatively
with POIS synthetic dataset and POIS real dataset. Fig. 4
shows the 4 typical segmentation results. The results similar
to Fig. 4(b) have a high occurrence in real testing because of
the domain gap between synthetic and real data. However,
Mask-GPD and Mask-SPD still generate robust picking
poses, which indicates that a successful pick does not rely
on sharp segmentation. Fig. 5 demonstrates a quantitative
comparison between the segmentation results on synthetic
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scenes and real scenes, and it is based on a set of metrics in
VI-A. The result shows that POIS has good generalization
on Sim-to-Real.

Po Pe Pd Pa
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Pe
rfo
rm
an
ce

synthetic
real

Fig. 5: Performance in synthetic data and real data. Notice that
lower values on Po, Pe and higher values on Pd, Pa are preferable.

C. Comparison with baseline policies

In POIS, we choose target masks from candidate instance
masks with a policy confidence map. To prove the advantage
of using the policy confidence map in decision making, we
build another decision-making algorithm that decides picking
policies based only on the spatial distribution of objects (the
spatial distribution of objects is almost the determinant factor
for paralleled picking policy decision-masking). We use this
algorithm as the baseline algorithm. We chose the leftmost
mask in the candidate instance masks as the suction target
and the rightmost mask as the grasp target.

The experiment shows that POIS with Policy confidence
map obtains results that are closer to ground truth, as
compared to the baseline algorithm, in both real (Table.I)
and synthetic dataset (Table.II).

TABLE I: Comparison in synthetic data
Po Pe Pd Pa

baseline 0.196 0.2195 0.594 1.616
POIS 0.127 0.153 0.698 1.698

ground truth 0.085 0 0.82 1.761

TABLE II: Comparison in real data
Po Pe Pd Pa

baseline 0.447 0.453 0.28 1.259
POIS 0.227 0.237 0.546 1.678

D. Robotic Application

We perform policy oriented instance segmentation for
unseen objects in real cluttered scenes on an ABB YuMi
IRB1400 robot platform with a plastic parallel-jaw gripper
and a silicone suction cup (as shown in Fig. 1(b)). The
gripper has a maximum width of 40mm and a length of 35
mm, and the suction cup has a radius of 7.5 mm, and a high-
resolution Photoneo PhoXi industrial sensor (1032x772 with
0.05 mm depth precision) is set 1300mm above the table.

(a) (b)

(c)

Fig. 6: POIS in clutter. (a) POIS calculates the target masks using
depth input. (b) Mask-GPD and Mask-SPD use the corresponding
masks to detect picking poses. (c) Following the detected poses,
the robot picks and removes the targets from the bin.

As shown in Fig. 6, the experimental results show that POIS
has decent compatibility with our ambidextrous robot.

VII. CONCLUSION

In this paper, we propose a policy-oriented instance
segmentation method (POIS) for ambidextrous robot
picking, which can output a pair of target masks for
paralleled picking. We build a new dataset that contains
6k synthetic scenes and 100 real scenes for policy-oriented
instance segmentation. Our method can be trained on
synthetic data and achieves decent policy-oriented instance
segmentation performance for unseen objects in real
cluttered scenes. It may generate inaccurate segmentation
result in heavily-occluded scenes, and we plan to make
further refinement with RGB images.
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